"""
E2E Test Data Creator for AutoGPT Platform

This script creates test data for E2E tests by using API functions instead of direct Prisma calls.
This approach ensures compatibility with future model changes by using the API layer.

Image/Video URL Domains Used:
- Images: picsum.photos (for all image URLs - avatars, store listing images, etc.)
- Videos: youtube.com (for store listing video URLs)

Add these domains to your Next.js config:
```javascript
// next.config.js
images: {
  domains: ['picsum.photos'],
}
```
"""

import asyncio
import random
from typing import Any, Dict, List

from faker import Faker

from backend.data.api_key import create_api_key
from backend.data.credit import get_user_credit_model
from backend.data.db import prisma
from backend.data.graph import Graph, Link, Node, create_graph

# Import API functions from the backend
from backend.data.user import get_or_create_user
from backend.server.v2.library.db import create_library_agent, create_preset
from backend.server.v2.library.model import LibraryAgentPresetCreatable
from backend.server.v2.store.db import create_store_submission, review_store_submission
from backend.util.clients import get_supabase

faker = Faker()


# Constants for data generation limits (reduced for E2E tests)
NUM_USERS = 15
NUM_AGENT_BLOCKS = 30
MIN_GRAPHS_PER_USER = 15
MAX_GRAPHS_PER_USER = 15
MIN_NODES_PER_GRAPH = 3
MAX_NODES_PER_GRAPH = 6
MIN_PRESETS_PER_USER = 2
MAX_PRESETS_PER_USER = 3
MIN_AGENTS_PER_USER = 15
MAX_AGENTS_PER_USER = 15
MIN_EXECUTIONS_PER_GRAPH = 2
MAX_EXECUTIONS_PER_GRAPH = 8
MIN_REVIEWS_PER_VERSION = 2
MAX_REVIEWS_PER_VERSION = 5


def get_image():
    """Generate a consistent image URL using picsum.photos service."""
    width = random.choice([200, 300, 400, 500, 600, 800])
    height = random.choice([200, 300, 400, 500, 600, 800])
    seed = random.randint(1, 1000)
    return f"https://picsum.photos/seed/{seed}/{width}/{height}"


def get_video_url():
    """Generate a consistent video URL using YouTube."""
    video_ids = [
        "dQw4w9WgXcQ",
        "9bZkp7q19f0",
        "kJQP7kiw5Fk",
        "RgKAFK5djSk",
        "L_jWHffIx5E",
    ]
    video_id = random.choice(video_ids)
    return f"https://www.youtube.com/watch?v={video_id}"


def get_category():
    """Generate a random category from the predefined list."""
    categories = [
        "productivity",
        "writing",
        "development",
        "data",
        "marketing",
        "research",
        "creative",
        "business",
        "personal",
        "other",
    ]
    return random.choice(categories)


class TestDataCreator:
    """Creates test data using API functions for E2E tests."""

    def __init__(self):
        self.users: List[Dict[str, Any]] = []
        self.agent_blocks: List[Dict[str, Any]] = []
        self.agent_graphs: List[Dict[str, Any]] = []
        self.library_agents: List[Dict[str, Any]] = []
        self.store_submissions: List[Dict[str, Any]] = []
        self.api_keys: List[Dict[str, Any]] = []
        self.presets: List[Dict[str, Any]] = []
        self.profiles: List[Dict[str, Any]] = []

    async def create_test_users(self) -> List[Dict[str, Any]]:
        """Create test users using Supabase client."""
        print(f"Creating {NUM_USERS} test users...")

        supabase = get_supabase()
        users = []

        for i in range(NUM_USERS):
            try:
                # Generate test user data
                if i == 0:
                    # First user should have test123@gmail.com email for testing
                    email = "test123@gmail.com"
                else:
                    email = faker.unique.email()
                password = "testpassword123"  # Standard test password
                user_id = f"test-user-{i}-{faker.uuid4()}"

                # Create user in Supabase Auth (if needed)
                try:
                    auth_response = supabase.auth.admin.create_user(
                        {"email": email, "password": password, "email_confirm": True}
                    )
                    if auth_response.user:
                        user_id = auth_response.user.id
                except Exception as supabase_error:
                    print(
                        f"Supabase user creation failed for {email}, using fallback: {supabase_error}"
                    )
                    # Fall back to direct database creation

                # Create mock user data similar to what auth middleware would provide
                user_data = {
                    "sub": user_id,
                    "email": email,
                }

                # Use the API function to create user in local database
                user = await get_or_create_user(user_data)
                users.append(user.model_dump())

            except Exception as e:
                print(f"Error creating user {i}: {e}")
                continue

        self.users = users
        return users

    async def get_available_blocks(self) -> List[Dict[str, Any]]:
        """Get available agent blocks from database."""
        print("Getting available agent blocks...")

        # Get blocks from database instead of the registry
        db_blocks = await prisma.agentblock.find_many()
        if not db_blocks:
            print("No blocks found in database, creating some basic blocks...")
            # Create some basic blocks if none exist
            from backend.blocks.io import AgentInputBlock, AgentOutputBlock
            from backend.blocks.maths import CalculatorBlock
            from backend.blocks.time_blocks import GetCurrentTimeBlock

            blocks_to_create = [
                AgentInputBlock(),
                AgentOutputBlock(),
                CalculatorBlock(),
                GetCurrentTimeBlock(),
            ]

            for block in blocks_to_create:
                try:
                    await prisma.agentblock.create(
                        data={
                            "id": block.id,
                            "name": block.name,
                            "inputSchema": "{}",
                            "outputSchema": "{}",
                        }
                    )
                except Exception as e:
                    print(f"Error creating block {block.name}: {e}")

            # Get blocks again after creation
            db_blocks = await prisma.agentblock.find_many()

        self.agent_blocks = [
            {"id": block.id, "name": block.name} for block in db_blocks
        ]
        print(f"Found {len(self.agent_blocks)} blocks in database")
        return self.agent_blocks

    async def create_test_graphs(self) -> List[Dict[str, Any]]:
        """Create test graphs using the API function."""
        print("Creating test graphs...")

        graphs = []
        for user in self.users:
            num_graphs = random.randint(MIN_GRAPHS_PER_USER, MAX_GRAPHS_PER_USER)

            for graph_num in range(num_graphs):
                # Create a simple graph with nodes and links
                graph_id = str(faker.uuid4())
                nodes = []
                links = []

                # Determine if this should be a DummyInput graph (first 3-4 graphs per user)
                is_dummy_input = graph_num < 4

                # Create nodes based on graph type
                if is_dummy_input:
                    # For dummy input graphs: only GetCurrentTimeBlock
                    node_id = str(faker.uuid4())
                    block = next(
                        b
                        for b in self.agent_blocks
                        if b["name"] == "GetCurrentTimeBlock"
                    )
                    input_default = {"trigger": "start", "format": "%H:%M:%S"}

                    node = Node(
                        id=node_id,
                        block_id=block["id"],
                        input_default=input_default,
                        metadata={"position": {"x": 0, "y": 0}},
                    )
                    nodes.append(node)
                else:
                    # For regular graphs: Create calculator agent pattern with 4 nodes
                    # Node 1: AgentInputBlock for 'a'
                    input_a_id = str(faker.uuid4())
                    input_a_block = next(
                        b for b in self.agent_blocks if b["name"] == "AgentInputBlock"
                    )
                    input_a_node = Node(
                        id=input_a_id,
                        block_id=input_a_block["id"],
                        input_default={
                            "name": "a",
                            "title": None,
                            "value": "",
                            "advanced": False,
                            "description": None,
                            "placeholder_values": [],
                        },
                        metadata={"position": {"x": -1012, "y": 674}},
                    )
                    nodes.append(input_a_node)

                    # Node 2: AgentInputBlock for 'b'
                    input_b_id = str(faker.uuid4())
                    input_b_block = next(
                        b for b in self.agent_blocks if b["name"] == "AgentInputBlock"
                    )
                    input_b_node = Node(
                        id=input_b_id,
                        block_id=input_b_block["id"],
                        input_default={
                            "name": "b",
                            "title": None,
                            "value": "",
                            "advanced": False,
                            "description": None,
                            "placeholder_values": [],
                        },
                        metadata={"position": {"x": -1117, "y": 78}},
                    )
                    nodes.append(input_b_node)

                    # Node 3: CalculatorBlock
                    calc_id = str(faker.uuid4())
                    calc_block = next(
                        b for b in self.agent_blocks if b["name"] == "CalculatorBlock"
                    )
                    calc_node = Node(
                        id=calc_id,
                        block_id=calc_block["id"],
                        input_default={"operation": "Add", "round_result": False},
                        metadata={"position": {"x": -435, "y": 363}},
                    )
                    nodes.append(calc_node)

                    # Node 4: AgentOutputBlock
                    output_id = str(faker.uuid4())
                    output_block = next(
                        b for b in self.agent_blocks if b["name"] == "AgentOutputBlock"
                    )
                    output_node = Node(
                        id=output_id,
                        block_id=output_block["id"],
                        input_default={
                            "name": "result",
                            "title": None,
                            "value": "",
                            "format": "",
                            "advanced": False,
                            "description": None,
                        },
                        metadata={"position": {"x": 402, "y": 0}},
                    )
                    nodes.append(output_node)

                    # Create links between nodes (only for non-dummy graphs with multiple nodes)
                    if len(nodes) >= 4:
                        # Use the actual node IDs from the created nodes instead of our variables
                        actual_input_a_id = nodes[0].id  # First node (input_a)
                        actual_input_b_id = nodes[1].id  # Second node (input_b)
                        actual_calc_id = nodes[2].id  # Third node (calculator)
                        actual_output_id = nodes[3].id  # Fourth node (output)

                        # Link input_a to calculator.a
                        link1 = Link(
                            source_id=actual_input_a_id,
                            sink_id=actual_calc_id,
                            source_name="result",
                            sink_name="a",
                            is_static=True,
                        )
                        links.append(link1)

                        # Link input_b to calculator.b
                        link2 = Link(
                            source_id=actual_input_b_id,
                            sink_id=actual_calc_id,
                            source_name="result",
                            sink_name="b",
                            is_static=True,
                        )
                        links.append(link2)

                        # Link calculator.result to output.value
                        link3 = Link(
                            source_id=actual_calc_id,
                            sink_id=actual_output_id,
                            source_name="result",
                            sink_name="value",
                            is_static=False,
                        )
                        links.append(link3)

                # Create graph object with DummyInput in name if it's a dummy input graph
                graph_name = faker.sentence(nb_words=3)
                if is_dummy_input:
                    graph_name = f"DummyInput {graph_name}"

                graph_name = f"{graph_name} Agents"

                graph = Graph(
                    id=graph_id,
                    name=graph_name,
                    description=faker.text(max_nb_chars=200),
                    nodes=nodes,
                    links=links,
                    is_active=True,
                )

                try:
                    # Use the API function to create graph
                    created_graph = await create_graph(graph, user["id"])
                    graph_dict = created_graph.model_dump()
                    # Ensure userId is included for store submissions
                    graph_dict["userId"] = user["id"]
                    graphs.append(graph_dict)
                    print(
                        f"✅ Created graph for user {user['id']}: {graph_dict['name']}"
                    )
                except Exception as e:
                    print(f"Error creating graph: {e}")
                    continue

        self.agent_graphs = graphs
        return graphs

    async def create_test_library_agents(self) -> List[Dict[str, Any]]:
        """Create test library agents using the API function."""
        print("Creating test library agents...")

        library_agents = []
        for user in self.users:
            num_agents = 10  # Create exactly 10 agents per user

            # Get available graphs for this user
            user_graphs = [
                g for g in self.agent_graphs if g.get("userId") == user["id"]
            ]
            if not user_graphs:
                continue

            # Shuffle and take unique graphs to avoid duplicates
            random.shuffle(user_graphs)
            selected_graphs = user_graphs[: min(num_agents, len(user_graphs))]

            for graph_data in selected_graphs:
                try:
                    # Get the graph model from the database
                    from backend.data.graph import get_graph

                    graph = await get_graph(
                        graph_data["id"], graph_data.get("version", 1), user["id"]
                    )
                    if graph:
                        # Use the API function to create library agent
                        library_agents.extend(
                            v.model_dump()
                            for v in await create_library_agent(graph, user["id"])
                        )
                except Exception as e:
                    print(f"Error creating library agent: {e}")
                    continue

        self.library_agents = library_agents
        return library_agents

    async def create_test_presets(self) -> List[Dict[str, Any]]:
        """Create test presets using the API function."""
        print("Creating test presets...")

        presets = []
        for user in self.users:
            num_presets = random.randint(MIN_PRESETS_PER_USER, MAX_PRESETS_PER_USER)

            # Get available graphs for this user
            user_graphs = [
                g for g in self.agent_graphs if g.get("userId") == user["id"]
            ]
            if not user_graphs:
                continue

            for _ in range(min(num_presets, len(user_graphs))):
                graph = random.choice(user_graphs)

                preset_data = LibraryAgentPresetCreatable(
                    name=faker.sentence(nb_words=3),
                    description=faker.text(max_nb_chars=200),
                    graph_id=graph["id"],  # Fixed field name
                    graph_version=graph.get("version", 1),  # Fixed field name
                    inputs={},  # Required field - empty inputs for test data
                    credentials={},  # Required field - empty credentials for test data
                    is_active=True,
                )

                try:
                    # Use the API function to create preset
                    preset = await create_preset(user["id"], preset_data)
                    presets.append(preset.model_dump())
                except Exception as e:
                    print(f"Error creating preset: {e}")
                    continue

        self.presets = presets
        return presets

    async def create_test_api_keys(self) -> List[Dict[str, Any]]:
        """Create test API keys using the API function."""
        print("Creating test API keys...")

        api_keys = []
        for user in self.users:
            from backend.data.api_key import APIKeyPermission

            try:
                # Use the API function to create API key
                api_key, _ = await create_api_key(
                    name=faker.word(),
                    user_id=user["id"],
                    permissions=[
                        APIKeyPermission.EXECUTE_GRAPH,
                        APIKeyPermission.READ_GRAPH,
                    ],
                    description=faker.text(),
                )
                api_keys.append(api_key.model_dump())
            except Exception as e:
                print(f"Error creating API key for user {user['id']}: {e}")
                continue

        self.api_keys = api_keys
        return api_keys

    async def update_test_profiles(self) -> List[Dict[str, Any]]:
        """Update existing user profiles to make some into featured creators."""
        print("Updating user profiles to create featured creators...")

        # Get all existing profiles (auto-created when users were created)
        existing_profiles = await prisma.profile.find_many(
            where={"userId": {"in": [user["id"] for user in self.users]}}
        )

        if not existing_profiles:
            print("No existing profiles found. Profiles may not be auto-created.")
            return []

        profiles = []
        # Select about 70% of users to become creators (update their profiles)
        num_creators = max(1, int(len(existing_profiles) * 0.7))
        selected_profiles = random.sample(
            existing_profiles, min(num_creators, len(existing_profiles))
        )

        # Mark about 50% of creators as featured (more for testing)
        num_featured = max(2, int(num_creators * 0.5))
        num_featured = min(
            num_featured, len(selected_profiles)
        )  # Don't exceed available profiles
        featured_profile_ids = set(
            random.sample([p.id for p in selected_profiles], num_featured)
        )

        for profile in selected_profiles:
            try:
                is_featured = profile.id in featured_profile_ids

                # Update the profile with creator data
                updated_profile = await prisma.profile.update(
                    where={"id": profile.id},
                    data={
                        "name": faker.name(),
                        "username": faker.user_name()
                        + str(random.randint(100, 999)),  # Ensure uniqueness
                        "description": faker.text(max_nb_chars=200),
                        "links": [faker.url() for _ in range(random.randint(1, 3))],
                        "avatarUrl": get_image(),
                        "isFeatured": is_featured,
                    },
                )

                if updated_profile:
                    profiles.append(updated_profile.model_dump())

            except Exception as e:
                print(f"Error updating profile {profile.id}: {e}")
                continue

        self.profiles = profiles
        return profiles

    async def create_test_store_submissions(self) -> List[Dict[str, Any]]:
        """Create test store submissions using the API function."""
        print("Creating test store submissions...")

        submissions = []
        approved_submissions = []

        # Create a special test submission for test123@gmail.com
        test_user = next(
            (user for user in self.users if user["email"] == "test123@gmail.com"), None
        )
        if test_user:
            # Special test data for consistent testing
            test_submission_data = {
                "user_id": test_user["id"],
                "agent_id": self.agent_graphs[0]["id"],  # Use first available graph
                "agent_version": 1,
                "slug": "test-agent-submission",
                "name": "Test Agent Submission",
                "sub_heading": "A test agent for frontend testing",
                "video_url": "https://www.youtube.com/watch?v=test123",
                "image_urls": [
                    "https://picsum.photos/200/300",
                    "https://picsum.photos/200/301",
                    "https://picsum.photos/200/302",
                ],
                "description": "This is a test agent submission specifically created for frontend testing purposes.",
                "categories": ["test", "demo", "frontend"],
                "changes_summary": "Initial test submission",
            }

            try:
                test_submission = await create_store_submission(**test_submission_data)
                submissions.append(test_submission.model_dump())
                print("✅ Created special test store submission for test123@gmail.com")

                # Randomly approve, reject, or leave pending the test submission
                if test_submission.store_listing_version_id:
                    random_value = random.random()
                    if random_value < 0.4:  # 40% chance to approve
                        approved_submission = await review_store_submission(
                            store_listing_version_id=test_submission.store_listing_version_id,
                            is_approved=True,
                            external_comments="Test submission approved",
                            internal_comments="Auto-approved test submission",
                            reviewer_id=test_user["id"],
                        )
                        approved_submissions.append(approved_submission.model_dump())
                        print("✅ Approved test store submission")

                        # Mark approved submission as featured
                        await prisma.storelistingversion.update(
                            where={"id": test_submission.store_listing_version_id},
                            data={"isFeatured": True},
                        )
                        print("🌟 Marked test agent as FEATURED")
                    elif random_value < 0.7:  # 30% chance to reject (40% to 70%)
                        await review_store_submission(
                            store_listing_version_id=test_submission.store_listing_version_id,
                            is_approved=False,
                            external_comments="Test submission rejected - needs improvements",
                            internal_comments="Auto-rejected test submission for E2E testing",
                            reviewer_id=test_user["id"],
                        )
                        print("❌ Rejected test store submission")
                    else:  # 30% chance to leave pending (70% to 100%)
                        print("⏳ Left test submission pending for review")

            except Exception as e:
                print(f"Error creating test store submission: {e}")
                import traceback

                traceback.print_exc()

        # Create regular submissions for all users
        for user in self.users:
            # Get available graphs for this specific user
            user_graphs = [
                g for g in self.agent_graphs if g.get("userId") == user["id"]
            ]
            print(f"User {user['id']} has {len(user_graphs)} graphs")
            if not user_graphs:
                print(
                    f"No graphs found for user {user['id']}, skipping store submissions"
                )
                continue

            # Create exactly 4 store submissions per user
            for submission_index in range(4):
                graph = random.choice(user_graphs)

                try:
                    print(
                        f"Creating store submission for user {user['id']} with graph {graph['id']} (owner: {graph.get('userId')})"
                    )

                    # Use the API function to create store submission with correct parameters
                    submission = await create_store_submission(
                        user_id=user["id"],  # Must match graph's userId
                        agent_id=graph["id"],
                        agent_version=graph.get("version", 1),
                        slug=faker.slug(),
                        name=graph.get("name", faker.sentence(nb_words=3)),
                        sub_heading=faker.sentence(),
                        video_url=get_video_url() if random.random() < 0.3 else None,
                        image_urls=[get_image() for _ in range(3)],
                        description=faker.text(),
                        categories=[
                            get_category()
                        ],  # Single category from predefined list
                        changes_summary="Initial E2E test submission",
                    )
                    submissions.append(submission.model_dump())
                    print(f"✅ Created store submission: {submission.name}")

                    # Randomly approve, reject, or leave pending the submission
                    if submission.store_listing_version_id:
                        random_value = random.random()
                        if random_value < 0.4:  # 40% chance to approve
                            try:
                                # Pick a random user as the reviewer (admin)
                                reviewer_id = random.choice(self.users)["id"]

                                approved_submission = await review_store_submission(
                                    store_listing_version_id=submission.store_listing_version_id,
                                    is_approved=True,
                                    external_comments="Auto-approved for E2E testing",
                                    internal_comments="Automatically approved by E2E test data script",
                                    reviewer_id=reviewer_id,
                                )
                                approved_submissions.append(
                                    approved_submission.model_dump()
                                )
                                print(
                                    f"✅ Approved store submission: {submission.name}"
                                )

                                # Mark some agents as featured during creation (30% chance)
                                # More likely for creators and first submissions
                                is_creator = user["id"] in [
                                    p.get("userId") for p in self.profiles
                                ]
                                feature_chance = (
                                    0.5 if is_creator else 0.2
                                )  # 50% for creators, 20% for others

                                if random.random() < feature_chance:
                                    try:
                                        await prisma.storelistingversion.update(
                                            where={
                                                "id": submission.store_listing_version_id
                                            },
                                            data={"isFeatured": True},
                                        )
                                        print(
                                            f"🌟 Marked agent as FEATURED: {submission.name}"
                                        )
                                    except Exception as e:
                                        print(
                                            f"Warning: Could not mark submission as featured: {e}"
                                        )

                            except Exception as e:
                                print(
                                    f"Warning: Could not approve submission {submission.name}: {e}"
                                )
                        elif random_value < 0.7:  # 30% chance to reject (40% to 70%)
                            try:
                                # Pick a random user as the reviewer (admin)
                                reviewer_id = random.choice(self.users)["id"]

                                await review_store_submission(
                                    store_listing_version_id=submission.store_listing_version_id,
                                    is_approved=False,
                                    external_comments="Submission rejected - needs improvements",
                                    internal_comments="Automatically rejected by E2E test data script",
                                    reviewer_id=reviewer_id,
                                )
                                print(
                                    f"❌ Rejected store submission: {submission.name}"
                                )
                            except Exception as e:
                                print(
                                    f"Warning: Could not reject submission {submission.name}: {e}"
                                )
                        else:  # 30% chance to leave pending (70% to 100%)
                            print(
                                f"⏳ Left submission pending for review: {submission.name}"
                            )

                except Exception as e:
                    print(
                        f"Error creating store submission for user {user['id']} graph {graph['id']}: {e}"
                    )
                    import traceback

                    traceback.print_exc()
                    continue

        print(
            f"Created {len(submissions)} store submissions, approved {len(approved_submissions)}"
        )
        self.store_submissions = submissions
        return submissions

    async def add_user_credits(self):
        """Add credits to users."""
        print("Adding credits to users...")

        credit_model = get_user_credit_model()

        for user in self.users:
            try:
                # Skip credits for disabled credit model to avoid errors
                if (
                    hasattr(credit_model, "__class__")
                    and "Disabled" in credit_model.__class__.__name__
                ):
                    print(f"Skipping credits for user {user['id']} - credits disabled")
                    continue

                # Add random credits to each user
                credit_amount = random.randint(100, 1000)

                await credit_model.top_up_credits(
                    user_id=user["id"], amount=credit_amount
                )
                print(f"Added {credit_amount} credits to user {user['id']}")
            except Exception:
                print(
                    f"Skipping credits for user {user['id']}: credits may be disabled"
                )
                continue

    async def create_all_test_data(self):
        """Create all test data."""
        print("Starting E2E test data creation...")

        # Create users first
        await self.create_test_users()

        # Get available blocks
        await self.get_available_blocks()

        # Create graphs
        await self.create_test_graphs()

        # Create library agents
        await self.create_test_library_agents()

        # Create presets
        await self.create_test_presets()

        # Create API keys
        await self.create_test_api_keys()

        # Update user profiles to create featured creators
        await self.update_test_profiles()

        # Create store submissions
        await self.create_test_store_submissions()

        # Add user credits
        await self.add_user_credits()

        # Refresh materialized views
        print("Refreshing materialized views...")
        try:
            await prisma.execute_raw("SELECT refresh_store_materialized_views();")
        except Exception as e:
            print(f"Error refreshing materialized views: {e}")

        print("E2E test data creation completed successfully!")

        # Print summary
        print("\n🎉 E2E Test Data Creation Summary:")
        print(f"✅ Users created: {len(self.users)}")
        print(f"✅ Agent blocks available: {len(self.agent_blocks)}")
        print(f"✅ Agent graphs created: {len(self.agent_graphs)}")
        print(f"✅ Library agents created: {len(self.library_agents)}")
        print(f"✅ Creator profiles updated: {len(self.profiles)} (some featured)")
        print(
            f"✅ Store submissions created: {len(self.store_submissions)} (some marked as featured during creation)"
        )
        print(f"✅ API keys created: {len(self.api_keys)}")
        print(f"✅ Presets created: {len(self.presets)}")
        print("\n🚀 Your E2E test database is ready to use!")


async def main():
    """Main function to run the test data creation."""
    # Connect to database
    await prisma.connect()

    try:
        creator = TestDataCreator()
        await creator.create_all_test_data()
    finally:
        # Disconnect from database
        await prisma.disconnect()


if __name__ == "__main__":
    asyncio.run(main())
